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Dimensional Crossover and Finite-Size Scaling below Tc 
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Using the formalism developed in earlier work, dimensional crossover on a 
d-dimensional layered lsing-type system satisfying periodic boundary conditions 
and of size L is considered below To(L), Tc(L) being the critical temperature of 
the finite-size system. Effective critical exponents 6~jr and flat are shown explicitly 
to crossover between their d- and ( d -  1 )-dimensional values for ~:L --* oo in the 
limits L/~L--* oo and L/~ L --, O, respectively, ~t. being the correlation length in 
the layers. Using an L-dependent renormalization group, the effective exponents 
are shown to satisfy natural generalizations of the standard scaling laws. In 
addition, L-dependent global scaling fields which span the entire crossover are 
defined and a scaling form of the equation of state in terms of them derived. All 
the above assertions are verified explicitly to one loop in perturbation theory, 
in particular effective exponents and a universal crossover equation of state are 
obtained and shown in the above asymptotic limits to be in good agreement 
with known results. 

KEY WORDS: Equation of state; renormalization group; effective exponents; 
crossover scaling laws; finite size scaling; dimensional crossover. 

1. INTRODUCTION 

O n e  of the mos t  s t r ik ing  features of  c o n t i n u o u s  phase  t rans i t ions  is the 

a p p e a r a n c e  of  s ingular i t ies ,  the s ingular i t ies  be ing  assoc ia ted  with fixed 

po in t s  of  the r e n o r m a l i z a t i o n  g r o u p  (RG) .  Sys tems tha t  possess m o r e  than  

one  fixed po in t  can  exhibi t  c ros sove r  b e h a v i o r  be tween  the va r ious  fixed 

points .  This  c ros sove r  b e h a v i o r  is i m p o r t a n t  bo th  theore t ica l ly  and  experi-  
menta l ly ,  but  is difficult to treat .  O n e  can  unde r s t and  this in tu i t ively  in the 

fo l lowing  way:  physical  systems charac ter i s t ica l ly  l o o k  very different at 

different  "scales ,"  exhib i t ing  different effective degrees  of  f reedom.  A genera l  
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discussion ot" crossover behavior in a field-theoretic RG context can be 
found in ref. 2. 

Developing RGs that potentially offer full, global scaling information 
is not simple; see ref. 3 for some examples. The desire to make accessible 
another fixed point besides the isotropic one has often entailed the match- 
ing of asymptotic expansions around the anisotropic and isotropic fixed 
points 14~ or the use of high-temperature expansions in conjunction with an 
ansatz for the scaling function. 15~ Global RGs can be found most simply using 
field-theoretic methods. Here though one encounters the commonly held 
prejudice that renormalization is entirely due to short-distance singularities. 
If one holds to this view, then it is not sensible to develop RGs that depend 
on relevant "infrared" scales. Implementing the point of view that renor- 
malization can depend on important IR scales, a small number of cross- 
overs have been treated in a more appropriate manner, e.g., crossover at a 
bicritical point, 16~ crossover in uniaxial dipolar ferromagnets, 171 and dimen- 
sional crossover, t~ It is with the latter that we will be exclusively concerned 
and in particuar with the extension of the techniques of ref. 1 to systems 
below To. 

Dimensional crossover has been chiefly addressed in the context of 
finite-size scaling.tS~ A great deal of effort has been put into finite-size scaling 
and finite-size effects in the context of lattice simulations (see, for instance, 
ref. 9 for an early review, and ref. 10 for recent results, where interestingly 
the concept of an effective dimensionality in a purely numerical context 
arises). In most work on the RG applied in the context of finite-size 
scalingt~,.~z~ it has been a "bulk" RG, which is independent of the finite-size 
scale L, that has been used. Such an RG has proved incapable of furnishing 
finite-size scaling functions and dimensional crossover information except 
when supplemented by further nonperturbative information, t~5~ In ref. 15, 
systems were considered that do not exhibit a true crossover in the sense 
that the finite system possesses only one fixed point-- the "bulk" fixed 
point. Finite-size scaling functions were obtained by, in the case of a totally 
finite system, treating the zero mode of the theory exactly, this exact treat- 
ment representing the extra nonperturbative information beyond the RG 
alluded to above. Some results in exact models "3) have been derived for 
crossover functions between two nontrivial fixed points, and in ref. 14 the 
dimensional crossover between mean-field theory and a nontrivial fixed 
point using the e-expansion was considered. The latter is useless, however, 
for treating the case of crossover between two nontrivial fixed points. 
In ref. 1 a formalism was developed that can treat finite-size systems that 
either do or do not possess more than one nontrivial fixed point, 
though the emphasis was completely on the former. The essence of the 
methodology is an L-dependent RG implemented in the spirit that the 
"true" effective degrees of freedom of the system are L dependent. 
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Before outlining the plan of the paper let us mention the advantages 
of our approach and elucidate what we believe to be novel in the paper. 
The advantages of the formulation from an RG point of view are: (i) it 
emphasizes ~L, which appears naturally in both experiment and numerical 
simulations; (ii) it allows for a systematic perturbative calculation of finite- 
size scaling functions; (iii) it is capable of treating systems with more than 
one nontrivial fixed point within the one globally defined, perturbatively 
controllable RG. The things we believe to be novel in the paper are the 
following: (i) the formal derivation of scaling forms for correlation func- 
tions in terms of ~L and effective critical exponents, in particular the cross- 
over equation of state; (ii) a demonstration using an L-dependent RG that 
the effective exponents obey natural analogs of the scaling laws; (iii) the 
derivation of explicit perturbative expressions for the effective exponents 
flefr and felt, between 3 and 2 dimensions and 4 and 3, which asymptotically 
are in good agreement with known results (consequently we verify in 
perturbation theory the exponent relations; the only other theoretical work 
we are aware of with analogous considerations is ref. 16 in the context of 
analytic corrections to scaling in planar Ising models); (iv) the derivation 
of a perturbative expression for the crossover equation of state. 

The plan of this paper is as follows. In Section 2 the renormalization 
group equation (RGE) below T,. is deduced and the scaling form of vertex 
functions throughout the crossover are discussed. We also discuss the 
concept of effective dimensionality. 1~'2~ In Section 3, the effective exponent 
laws involving 6oft and flefr are derived and in Section 4 the one-loop 
universal scaling form of the crossover equation of state is calculated. 
We present the crossover coexistence surface in graphical form in Fig. 1. 
Figure 2 presents the magnetization as a function of temperature for different 
L on the coexistence curve. It compares favorably with numerical results of 
Binder. '9' Section 5 gives the one-loop results for the floating fixed-point 
effective exponents fie*, 6e*rf, and de*. These are seen to cross over between 
the perturbative expressions for the associated limiting fixed dimension 
exponents, fie* is presented in graphical form in Fig. 3 for three- and four- 
dimensional layered geometries. The corresponding exponents 6*rr and de*~ 
are presented in Fig. 4. Section 6 is reserved for conjectures and conclusions. 

2. S C A L I N G  B E L O W  T c 

The theory that we use as a prototypical example throughout this 
paper is an Ising-type system described by the Landau-Ginzburg-Wilson 
Hamiltonian 

1 1 ~ 2 1 2 A s  
9f' = ~  (Vtps)2 + ~ m - s t p s  + ~ t s tps  + -~. tp 4 - Harps (1 ) 



222 Freire e t  al .  

on S i x  R d- t, i.e., a layered geometry with periodic boundary conditions 
with (d-1)-dimensional  layers and of total thickness L. We restrict our 
considerations to 3 ~< d ~< 4. We know that in the broken phase of an Ising- 
type system the correlation functions are functions of the magnetization 
density M =  (q~) of the system which we assume to be homogeneous. 

The system is renormalized by locating the critical point at t = 0 and 
subject to the following conditions for the renormalization of the coupling 
and the composite operator q~2 (we follow the notation of ref. 17 and 
postpone discussion of wavefunction renormalization for the moment) 

/ - ' ( 4 ) ( k  --- 0, t = X 2, 2, L, x) = 2 (2) 

F(2' l)(k=0, t = x  2, 2, L, re)= 1 (3) 

Our notation is that k is the momentum in the layers and k includes the 
discrete momentum perpendicular to the layers. From (2) we also define a 
dimensionless coupling 2 = 2 x  cd-41. Obviously as these normalization 
conditions are L dependent, the consequent renormalized parameters are 
implicitly L dependent. From the ~c independence of F(a m we find the RGE 
for /-,(N) 

L O 1 - {xO+fl(].,Lx)~---~+,~2(]., x)t-~-~Y~(2, Lx ) [N+M~I}F 'u '=O 

(4) 

Its solution can be found by the method of characteristics 

F(m(t, M, 2, L, x) 

N Lx) d__ff~ 1 M(p),~.(p),L, =exp [--~ ff~y~(x, F(m(t(p), xp) (5) 

where the running variables t(p), M(p), and 2(p) satisfy the characteristic 
equations 

at(p) 
p ~ = y,p2(~.(p), L~:p) t(p) (6) 

aM(p) l 
p ~ = -~ ~(~(p), L~p) M(p) (7) 

d~(p) 
p ~ = fl(~.(p), L~cp) (8) 



Dimensional Crossover 223 

We can also rewrite (8) after a change of variable back to the dimensionful 
coupling 2 as 

d,~(p) 
p ~ = ~.(2(p), Lxp) 2(p) (9) 

The left-hand side of (5) cannot be evaluated perturbatively at t = 0 ,  
due to infrared divergences. This problem is surmounted by proceeding 
analogously to a system without crossover. The arbitrariness of p is utilized 
by trying to choose it so that the system is kept away from the infrared 
dangerous region for any value of L. Some possible conditions one might 
envision using to determine p are: t (p )=  (xp) 2, 1/2k(p)MZ(p)=pZx2, or 
t ( p )+I /2 2 (p )M2 (p )=p2K  2. The usual condition M ( p ) = ( p x )  a/2-t is 
inappropriate for the crossover problem and will be discussed further at the 
end of Section 5. 

We now turn our attention to wavefunction and F ~ renormalization. 
Consider the following sets of normalization conditions 

el2~(k = 0, t(p), M ( p ) = 0 ,  2(p), L, x p ) =  t(p) 
(1o) 

xp) i=o 
O--~-- F(2~(k, t(p), M(p)=O,  2(p), L, =1 

Ok z 

F~2}(k = 0, t (p )=  0, M(p),  2(p), L, x p ) = - ~  M2(p) 

(11) 

Ok 2 F(2~(k, t (p )=0 ,  M(p),  2(p), L, xp) k= o = 1 

F(2~(k = O, t(p ), M(p ), 2(p),  L, ~:p) = t(p ) + - ~  M2(p ) 
(12) 

0 F(2)(k ' t(p), M(p),  2(p), L, xp) k= = 1 
0 k2 o 

From the definition of the physical correlation length in the layers 

~2 _ J" d~x x26~2'( x, 0) (13) 
L - 2d~ dax GI}~(x, O) 

where x 2 is the d~stance squared in the layers, one sees that conditions (10) 
imply t(p) = p2x2 = ~Z,z, where 3,, is the correlation length in the finite-size 
system when M = 0 .  With (11), 1/22(p)M2(p) z 2 ~-2 = p  x =qLM, where ~LM is 
the correlation length in the finite-size system when T =  To(L). With (12), 
t(p) + 1/22(p)MZ(p)=pZx2= ~L~t,, where ~LM, is the generic correlation 
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length in the finite size system. The correlation lengths ~t_,, ~tM, and ~tM, 
are all nonlinear scaling fields which are capable of interpolating between 
the d- and ( d -  I )-dimensional fixed points of the system for r --, oo in the 
limits L/r  oo and L/r O, respectively. 

To see the explicit crossover between the d- and (d-1)-d imensional  
fixed points we glean some results from ref. 1. With the normalization 
condition (2) one finds to one loop 

p ~pp = - (4 - d)). + ~ (4r0 I t -  ,,,/2 F 

~-. ( 47t2n 2 ~ ld-  l ),,,- 
x , ,  =~'_ ~_ \ I + L2tc2p-----~_ j +O(~. s) (14) 

As Ltcp--* oo, p--* 0 this displays the normal d-dimensional fixed point. 
When LKp ~ 0 the natural coupling constant is ; . / x p L  = u and for fixed L, 
u runs to the (d-1)-d imensional  fixed point. Naturally such a change of 
variables cannot affect the physics, it merely makes the ( d -  1)-dimensional 
fixed point look familiar. One can take the solution of (14) as the "small" 
parameter with respect to which perturbation theory is ordered. In bulk 
critical phenomena one captures the dominant physics by expanding 
around a fixed point. In a crossover, however, there is more than one, 
hence corrections to scaling around one fixed point become very large 
when one approaches the other. We emphasize that in our formalism such 
corrections are computable. It would be advantageous, however, to mimic 
the standard formalism as much as possible by keeping corrections to 
scaling small. Consider then the change of variables h = a~)~, where a~ is the 
coefficient of the O(~. 2) term in (14). One finds 

dh 
x -~x = f l (h)  = - e ( L K ) h  + h'- + O(h 3) (15) 

where 

din  al 
~(LK) = 4 -- d -  - -  

d ln  K 

= 5 - d - ( 7 - d )  
~,~,= _ ~, (4rt2n2/L 2~:2)( l + (4rrZn2/L 2K2) ) ~a- 9v2 

~..,,~= _ ,~ ( 1 + (4n2n2/L2h'2))  "1- 7v2 

Setting f l ( h ) = 0  yields to lowest order 

h* = e (LK)  + O ( e 2 ( L x ) )  

(16) 

(17) 
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We term h* a floating fixed point. 1~'2't81 Its importance is twofold. First, 
corrections to scaling around the floating fixed point are small. Second, it 
is, like a conventional fixed point, found from an algebraic property of the 
/3 funct ion-- i ts  zeros. This is obviously computat ionally much simpler than 
having to solve a differential equation. The difference between using the 
solutions of (14) or the floating fixed point corresponds to slowly varying 
factors which are redefinitions of the L-dependent crossover variables such 
as t. For  the case at hand h* varies between 4 -  d and 5 - d. It is clear that 
the floating fixed point is not necessarily numerically small. In order to 
achieve accurate estimates of physical quantities one would in principle 
wish to work to higher order and attempt some resummation procedure 
analogous to what is done with the fixed dimension expansionJ ~9~ Apart 
from lengthy calculation there is absolutely nothing to prevent this being 
done using the present techniques for d < 4 .  Although we will restrict 
attention to one-loop results herein, two-loop results for T >  T, . (L)  have 
been calculated in refs. 18 and 1. One also knows by experience that one- 
loop results are better than mean-field theory and that two-loop results are 
in fact quite often close to numerical and experimental results. 

One can think of e(LK) as being a measure of the deviation from four 
of the effective dimensionality of the system. More generally one can define 
an effective dimensionality of the system. More generally one can define an 
effective dimensionality 4 d~fr via the relation 

d i n  F c4~ 
- -  - (4 -- d a r -  2Grr) v~rr ( 18 ) 
d in  ftl 

where v,tr = (2 - G,-')-J and qe~r = )'~o are the anomalous dimensions of ~o 2 and 
~0 across the crossover. For  k = 0, d,fr = 4 - 3,;. V;. is related to the anomalous 
dimension of the dimensionful coupling constant and satisfies (9). As 
7;. = e( LK ) +/3(h) /h ,  one finds dar = d -  fl( ~. ) f i .  Clearly d, fr interpolates 
between d and d -  1 as h varies from the bulk to the reduced fixed points. 
In line with the simpler notion of a floating fixed point one can define a 
floating deft, d*rt, as d * r r = 4 - ) , * .  The d,~ also interpolates between d 
and d -  ! and therefore captures the essence of the crossover, the difference 
between den and d*rr being a slowly varying correction to scaling 
throughout  the crossover. One can also define effective critical exponents 
v*rf and r/~* with respect to the floating fixed point, i.e., v ~ =  Var(h = h*) and 

r/~ = q~rr(h = h*). 

4 An analogous quantity was found by A. Bray in the context of the spherical model (private 
communication ). 
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Now, consider (5) with the conditions (I0). First, solving the charac- 
teristic equations (7) and (8) and expanding around the floating fixed point 
h = h* yields 

Substituting back into (5) and using dimensional analysis gives 

( F ( m =  ~ Lu22 - N- d exp \ 

x o~l,m M 2 exp - (d*fr- 2 + q*rr) , (20) 

where ~[t N) is a universal function. So, if/-.(N) is measured in units of ~L, 
we see that the scaling functions are functions of two nonlinear scaling 
variables L/~L, and 

M2 exp [ - f ~  3' (d*rr- 2 + q*rr) -~  x ]  

With the conditions (11) instead of (10) one finds 

ff.IN)=~,t/M2_N_d['N CL-,~ ..~) ( ( exp~--~-~i  q*fr , ~ )  texp -f~i ~ ' - -  
Ve* ff 

(21) 

where ~ 1  is also a universal function. For F (NI measured in units of ~LM 
these scaling functions are functions of the two scaling fields L/~CM and 

',-:) t exp ( - f~i~2t v.fr ~ 

The correlation length ~c, interpolates between t -'~ and t-" '  for ~L, ~ ov 
in the limits L/~L, --, ~ and L/r ---, 0, respectively, where vh and vr are the 
bulk and reduced correlation length exponents. Note that all the above 
scaling fields are globally valid in the sense that they capture both the 
d- and ( d -  1 )-dimensional fixed points. We could also have written down 
scaling functions ~M, which would be functions of ~LM, which is also a 
good scaling field for the crossover. 
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3. S C A L I N G  L A W S  

In the previous section we investigated the scaling form of vertex func- 
tions below T,. in terms of two scaling fields ~t, and ~tM. In this section 
we would like to proceed further with a general scaling formulation, 
examining what happens to scaling laws for the crossover. In particular 
let us consider the crossover equation of state. From the noncrossover 
equation of state H = M ~ f ( t M  -l/n) it is natural to define effective critical 
exponents for the crossover 

d l n H  ,=o 6cfr- ~ and /3e~r = din  M 
dln Itl 

the latter being defined on the crossover coexistence curve. 
When T=T,.(L), i.e., t=t(p)=O, we impose the normalization 

condition 

-- ) 2(p)M3(p) H(2(p-)M2(p) 1, h (p) ,Lxp - (22) 
\ 2p2x2 6(px)d/2+ t 

This condition is consistent with the normalization condition on I "~z~ and 
motivated by the mean-field theory case. With this normalization condition 
one finds 

d l n H  (d  1 l fl(2(p))'~ d lnp  (23) 
d l n m  = + 1 - ~ - ~  ~.(p) ] d l n m  

where the characteristic equation for ).(p) has been used. From Section 2, 
recall that fl(2)/2 = d-deft,  hence with the condition 2(p)M2(p)/2 =p2~c'-, 
one finds 

din  p 2 

din  M -  (deft- 2 +?~)  

Substituting back into (23) gives 

d in  H dcrr + 2 -qctr  
- -  - 6 ~ r r -  ( 2 4 )  
d In M d~rf- 2 + r/err 

Now let us turn our attention to the relationship between M and t on 
the coexistence curve. Imposing the normalization condition 

M(It(P)l = p - K  , 3.(p ), L K p  ) = L,~(p) p~J  (25) 



228 Freire e t  al. 

which again corresponds to imposing the mean-field condition at the 
normalization point, and requires only a finite renormalization of G ~11, and 
once again using the characteristic equation for ).(p), one finds 

d l n M =  d _ 2 + ) ,  ~ _---- 
din Itl d in  It] 

With the condition It(p)l = p2~2 one has din p/dln [tl = v~. Substituting 
into (26) gives 

dtnM a -vr d 
din [tl =~'=fr- 2 t , ~ - 2 + q a r )  (27) 

Thus we get the very interesting result that natural analogs of the con- 
ventional scaling laws are obeyed throughout the entire crossover. What 
this implies is that there is a generalization of universality which applies 
across the crossover in the sense that knowledge of y~ and 7~-" are sufficient 
to determine the entire crossover along with one more function dar. 
Knowledge of d~rr is equivalent to knowledge of ),a. In other words, in con- 
tradistinction to the standard noncrossover problem, where ~. merely 
represents slowly varying corrections to scaling, here one requires ~. to 
obtain full knowledge of the crossover, i,e., the leading irrelevant operator 
is playing a significant role. It is also interesting that effective exponents 
defined with respect to the floating fixed point also obey scaling laws, 
explicitly 

- -  Ve*ff t A *  * 6 .=d%_2+t l ,  . d * ~  + 2 q,* and fl.*~ = -~- ~, , ,~- 2 + t/.fr) 

The difference between a floating fixed-point and running coupling result 
amounts to no more than a redefinition of ones crossover variables by 
slowly varying nonsingular corrections to scaling across the crossover. In 
other words, the floating fixed point captures the "universal" part of the 
crossover. 

Having introduced the effective exponents &at and fl~g we can return to 
the considerations of Section 3 and write the scaling forms in a slightly 
different way. Consider (20) and (21), first (20). The integrals in (20) are 
from an initial to a final inverse correlation length, having used the relation 
p Z K 2 =  ~ L  I , hence we can change variables using the definition of Var, i.e., 
dp/p = - d~L,/~L, = vr to find 

- d-21d+  ~ 

• ~ ' ,m(Mexp( - f [ f l a r~ , ) ,Lexp( f [  V,rr--fi-J,)dt"~'~ (28, 
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The two sealing fields entering the scaling function, in terms of T -  To(L), 
a r e  

M exp ( -  fl/~.fr ~,' ) and Lexp(flv." ,j  
Now consider (21). Using the condition fixing p in terms of M, we can 
change variables 

to find 

dp d~ L M 2 dM 
P ~LM d~tf- 2 + rlcfr M 

[;( r ' " >  = exp N + d - ' ~ (  + r#<.)) ~-- -~-7 ] 1M N d k ve~ dM -I 

x.~i(texp(_fMi I dM'~ verrdM')~ (29) 

The equation of state in both cases is found simply by putting N = 1. 
Now, from the perturbative results, as we shall see in the next section, 

with the condition 1/22(p)M2(p)=p2K a one can extract a factor 
[2/2(p)] ~f2 from ~ l ,  the remainder of ~ l  being a polynomial expansion 
in ~.(p) [or h(p)]. With 

\ d ~ -  2 + q~frl M' ) (30) 

one obtains for the scaling form of the equation of state 

( fM fi dM"~ ( ( M 1 dm"~ L exp f IM verr dm"~'~ 
H = e x p  l ef t  M,} aJ texp -~, [3:fr M' } '  \.l, ,13.fr M' } }  

in terms of the two scaling fields 

x = t e x p  .-  fl,rr M ' }  

For t = 0, 

.ff = 1 and 

(31) 

and Y=LexP(-;, M'J 
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recovering (24). For  H =  0 the equation of state is given by C~(x, y ) =  0, 
which yields a coexistence curve x = g(y), hence 

(_  I M ve~ dM'l l 1 dM' l t=g(Lexp\ 3, flelf M,,ljexp(fl M (32) Llf M' / 

In order that we reproduce (27) we must have g(y)= 1, which, as we show 
in the next section, is true in terms of appropriate variables. This is a 
self-consistency condition for the effective exponent laws. We will now 
verify much of the above perturbatively. 

4. THE UNIVERSAL ONE-LOOP EQUATION OF STATE 

To obtain a universal one-loop equation of state we need to make two 
demands: First that 

( fM 3 dM"  
H = exp k j  I elf M' ) 

when t = 0 and second that for H =  0 the equation of state has a zero at 
x = - l ,  where x is the scaling field introduced in Section 3. These demands 
ensure the effective exponent laws (24) and (27). Using 

in a one-loop approximation and setting x = 1 for convenience, one finds 
for t = 0 that 6elf= (delf + 2)/(delf-  2). 

Now consider the case when t :~ 0; our task is to get our expressions 
into the universal form (31). We define a variable x =  [a+b(y)2(y)] t(p)/p2x 2 
and choose a and b such that for H = 0, x = - 1  is a zero of the equation 
of state. Compar ing powers of ,~ determines a and b. Substituting back into 
the equation of state and reexpressing the resulting expressions in terms of 
the coupling h = a , 2  gives 

[2/(5 - d)(3 - d) ]  h(y) 
fq(x, y ) =  1 + x -  

~ _ ' ~  [1 + (2xn/y)2] "1-7v2 

x I [ ( l + x )  1 + -  
\ Y / J  

- x  5 +  - -  - 1 + 5 +  - -  
\ Y / J \ Y J J ) 

(33 )  
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The universal form of the equation of state to one loop in terms of the two 
scaling fields x and y is then given by 

[ M(d"rr+2"~dM'li(x,Y) 
H =  expfl  \dar-2] M' I 

in accordance with (31). Note that an essentially equivalent expression is 
obtained in expanding about the floating fixed point, the quantities in (33) 
being replaced by their floating fixed-point values to this order. 

For d = 4 in terms of the floating fixed point we have 

o~ [ 1 - 2 ( 2 r c n / y ) Z ] [ 1  + ( 2 t r u l y ) 2 ]  - 5/2 
if(x, y )=  1 + x +  Z-~ { E ~  [1 + (2~n/y)2]-3/2} 2 

--oo 

(34) 

For d =  3 care should be taken in taking t h e  limit; we are fortunate, 
however, in that the sums in this case can be reduced to elementary 
functions. One finds 

2h(y) tanh(y/2) 
if(x, y) = 1 + x + 

y(1 +y/sinh y) 

x~ ~/2-1 
x {(1 + x) In sinh ( 2 ) - l n  sinh [2  (1 + ~)  j 

- x In sinh [2  (~) ' /2 ]}  (35) 

The running coupling result is independent of the value of the initial 
coupling if it is set arbitrarily but finite at p--oo;  the resulting running 
coupling is then h ( y ) =  1 +y/sinh(y), which can easily be verified to be a 
solution of (15), in which 

2 coth(y/2) 
e =  1 +Ysinh(y) + y  

The corresponding running and floating fixed-point forms of the equation 
of state are obtained by replacing h(y) in (35) by these expressions, respec- 
tively. For the limit L/~ ~ oo one can also perform an e expansion to derive 
the well-known results. ~7"2~1 Finally we note that the coexistence curve is 

822/74/I-2-16 
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Fig. 1. The coexistence surface. Here In M is plotted versus In L and lnlt[. 

g iven by x = - 1 ,  which  is a zero  of  f~(x, y). This  co r r e sponds  to a surface 

in the c ros sove r  case since an  add i t iona l  var iab le  L enters.  W e  present  this 

surface in g raph ica l  fo rm in Fig. 1. F igu re  2 shows  the coexis tence  curves  

for a set of  different  fixed layer  thickness.  We  have  separa ted  the curves  by 
choos ing  T o ( L ) =  1 -  1/(2 q-- L243), where  t =  T,.(L)-T. This  specifies the 

va lue  of  T for which  t in tercepts  the M = 0  axis, but  does  no t  affect the 

shape  of  the curves.  The  dependence  of  To(L) on L is no t  de t e rmined  in 

the above ;  we have  therefore  chosen  it arbi t rar i ly .  O u r  prescr ip t ion  was to 

0.6 

04 

02 

02 0.4 0.6 0.8 I 
T 

Fig. 2. The magnetization as a function of t for L = 0, 1, 1.65, 2.15, L = 3, L = 5 and L = oo. 
We have separated the curves by choosing our shift in the form t = 1 - 1/(2 + L -'43) - T. 
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choose To(0) to be the value of the critical temperature given by the exact 
solution of the 2d Ising model and the value for L = oo to be 1/2. The 
functional form was taken to be To(L)= 1 -  1/(a+L~/"), 1/v to one loop 
being 2.43. The resulting graph compares favorably with the numerical 
results of Binder, (9) Fig. 25. 

5. EFFECTIVE E X P O N E N T S  TO ONE LOOP 

In this section we will derive expressions for 6err and fl~rr to one loop. From 
(23), noting that ~ , = 0  to one loop we have 

6~, d ln  H (d~rr(p)+22) (36) 
din  M \ d~tr(p ) - 

Working in terms of the floating fixed point and absorbing correction to 
scaling factors into redefinitions of H and M, we find that 6err becomes 

. {d*fr(p)+ - e ( L x p ) ~  

where p is the solution of 2 (p )MZ(p) /2=p2x  2 and we have expanded 
the denominator in e(Lxp). This is necessary, as we are implementing 
perturbation theory in terms of the floating fixed point. At the floating 
fixed point one obtains 

e(Lxp) MZ(p ) (38) (Px)d- 2 al(Lxp)  

This transcendental equation must be solved for p and the solution 
substituted into 

~,oo= _ ~ ( 4rt2n2/p2 L 21r 1 + 4~z2n2 /p2 L ZK2) (d- 9)/2 

~.,,~= - oo ( I + 41z2n2/p2 L 2K2)td- 7)/2 (39) di*fr = 8 -- d -  (7 - d) 

For d = 3 

LZl'c2p 2 coth(Lxp/2) 
6*rf = 4 + (40) 

sinh Lxp + Lxp 

Denoting the solution of (38) as Lxp = g ( L M  2/td-2)) gives for d =  4 

�9 _ Z,,~= (4nn2/g2)(1 +4r~2n2/g2) -5/2 
6err-- 4 -- 3 - ~ ~-'-,,~-- - oo (1 W 4rc2n2/g2) -3/2 

As LM2/td-21-~ 0, tSeff-'~ 4, and as L M  2/(d-2)--+ oo, 6eft--+ 3. 

(41) 
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Turning now to fl~r, to one loop it is 

d In M verr 
flefr = d In [ t[ = ~ ( d a r -  2 ) (42) 

Once again working in terms of the floating fixed point and absorbing 
corrections to scaling into redefinitions of t and M, we find that (42) 
becomes 

1 e (Lxp)  
fl*fr = 2 6 (43) 

To find p we need to solve It(p)l = p2x2. To lowest order it gives px  = It[ i/z, 
thus 

fl,rr = + ( 7 - ) ~ n =  (4n2n2/L2Itl)(1 +4~2n2/L21tl)(d-91/2 
6 

For  d = 3 

Y.,,~= - o~ ( 1 + 4n2n2/L2lt I )(d- 7~/2 
(44) 

oo -at:) . 1 ~.,,= (4n2n2/L21tl)(1 +4n2n2/L21t l ) -3  
/3~ 3 Z,,~176 -o~ (1 +4rc2n2/L21tl)-2 

1 1 L21tl coth(Lltll/2/2) 
3 6 s i n h L l t l l / 2 + L l t l  ~/2 

(45) 

05 d=4 

d=3 ~00..230.3 

01 

-6 -4 -2 0 2 4 6 

Fig. 3. The effective exponent flc~ for the four-dimensional layered geometry [8=4) and 
three-dimensional layered geometry (d= 3) vs. In(~L,/L). The exponent fl~*IT exhibits a cross- 
over from the asymptotic value of 0.5 for small ~L,/L to 0.33 for large ~L,/L in the d= 4 case 
and from 0.33 to 0.17 in the d=3 case. 
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6:t t d = 3 

6 , ; ;  d = 3 

-6 4 -2 6 

Fig. 4. The effective exponents 6*tr and d=*tr for the four-dimensional (d = 4) and three-dimen- 
sional (d= 3) layered geometry vs. In(~LM/L). The exponent 6*rr exhibits a crossover from 4.0 
to 3.0 in the d = 4 case and from 5.0 to 4.0 in the d = 3 case, while d=*~ exhibits a crossover 
from the asymptotic value of 4.0 to 3.0 in the d= 4 case and from 3.0 to 2.0 in the d= 3 case, 
as ~.L,v/L ranges from small to large values. 

Obviously ,  working  with fle~ is much simpler  than 6 *  because the condi-  
t ion determining p is much more  amenable  to a per turba t ive  solut ion than 
that  for 6%. We present  fl*rr in Fig. 3 in graphical  form for 4-dimensional  
to 3-dimensional  and 3-dimensional  to 2-dimensional  crossovers. Figure  4 
presents &*fr and  d*fr similarly in graphica l  form for these crossovers. 

One might  enquire as to why the usual condi t ion  M(p)= (px) d/2-1 
was not  used. The reason why it cannot  be used is that  it leads to an ill- 
defined per tu rba t ion  theory in the limit L M  2/cd-2)--+0 because setting a 
condi t ion  on M does not  keep away from the critical region if ;t can 
become very small. This cannot  happen  in the noncrossover  case, but  does 
happen  here. 

6. C O N C L U S I O N  

Previously (1) we had  set out  a formulat ion of how to treat  pertur-  
batively the crossover above  Tc for a finite-size system, wherein the finite 
system itself could exhibit  critical behavior.  The present  paper  is a na tura l  
extension of this formula t ion  to below To. The canonical  p roblem to a 
large extent from the crossover point  of view is the same either above  or  
below Tc in that  one would like an R G  that  "coarse grains" the effective 
degrees of freedom in an L-dependent  way, as one knows that  the physics 
is very L dependent .  The na tura l  consequence of an L-dependent  R G  is 
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seen to be L-dependent anomalous dimensions and the appearance of ~z as 
the most natural scaling field in the problem as opposed to the bulk 
correlation length. We identified three such scaling fields that were capable 
of spanning the crossover: ~L,, eLM, and ~LM,. The first two represent 
physically the correlation length in finite-size systems above Tc(L ) in zero 
magnetic field and at T =  Tc(L), respectively. ~LM, is the true correlation 
length in the real physical system. For the crossover in question, however, 
all three are equally good nonlinear scaling fields. The L-dependent RG 
shows how correlation functions and particularly the equation of state can 
be written in a natural scaling form in terms of these scaling fields. 

We have defined natural analogs of the critical exponents 6 and fl for 
the crossover and showed that these effective exponents satisfy the scaling 
laws 6err = (deft + 2 - flat)/(deft- 2 + r/err ) and flat= �89 2 + r/crr), which 
are the analogs of the standard relations for the noncrossover case. These 
were the natural extension of the scaling law Verr= vcfr(2-~/erf) derived in 
ref. 18. One subtlety was the appearance of an effective dimensionality den 
in these relations. This object was seen to appear naturally as a representa- 
tion of the fact that the scaling dimension of the operator ~0 4 and hence the 
coupling constant 2 changed across the crossover. In the noncrossover case 
V~ plays a rather minor role, for instance, representing the slowly varying 
and nonsingular corrections to scaling about the Wilson-Fisher fixed point. 
However, in the crossover case the change in degree of relevance of the ~0 4 
operator is very important and must be accounted for, and d~g does this in 
a very natural fashion. It also appears very naturally if one thinks of it in 
the context of universality. The universality class of a system is specified by 
space dimensionality and symmetry. Here we interpolate between two 
universality classes with different space dimensions, hence it is quite natural 
to have a generalized universality in the sense that only y~2, 7~, and d~tr are 
required for a complete description. The effective exponents themselves are 
also universal quantities. The scaling fields for the crossover were shown to 
have a very natural representation in terms of the effective exponents and 
interpolated between just the ones one would expect in the asymptotic 
regimes. Having determined a universal form for the equation of state, we 
proceeded to determine it explicitly perturbatively. By implementing the 
effective exponent scaling laws one could determine the variable redefini- 
tions necessary in order to make the equation universal. The equation of 
the crossover coexistence curve was determined. 

There are several problems worth considering which stem directly 
from the considerations herein. First and foremost is the question of the 
discontinuity fixed point at the end of the coexistence curve. This fixed 
point cannot be seen in any of the expressions we derived here because the 
parameter that induces the crossover has not been included in the renor- 
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malization prescription, and therefore ones RG will be independent of it 
and hence the crossover will not be seen. In the case of the strong-coupling 
fixed point the natural thing to do is to implement an M-dependent renor- 
malization, hence ones anomalous dimensions, etc., would all be explicitly 
M dependent. We will return to this issue in a future publication. Related 
to this is the question of the behavior below To(L) of an O(N) model, in 
particular the nonlinear a model. Once again we will return to this issue in 
the future. 
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